

UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE COMPUTAÇÃO

PLANO DE ENSINO

Nome do Componente Curricular em português:			Código:	
Teoria da Computação			BCC244	
Nome do Componente Curricular e	m inglês:			
Theory of Computation				
Nome e sigla do departamento:			Unidade acadêmica:	
Departamento de Computação (DECOM)		ICEB		
Nome do docente:				
Rodrigo Geraldo Ribeiro				
Carga horária semestral:	Carga horária semanal teórica:	Carga h	orária semanal prática:	
60 horas	8 horas/aula	0 hor	as/aula	
Data de aprovação na assembleia departamental:				
//				
Ementa:				

Linguagens regulares, expressões regulares, autômatos de estados finitos; linguagens e gramáticas livres de contexto, autômatos de pilha; linguagens e gramáticas sensíveis ao contexto; máquinas de

Turing, tese de Church-Turing; computabilidade e decidibilidade; hierarquia de Chomsky.

Conteúdo Programático:

- Introdução: alfabetos, strings e linguagens
- Autômatos de Estados Finitos Deterministas e não Deterministas
- Expressões Regulares
- Minimização de Autômatos Finitos
- Propriedades de Linguagens Regulares
- Lema do Bombeamento para Linguagens Regulares (LRs)
- Gramáticas e Linguagens Livres de Contexto (LLC)
- Ambiguidade
- Propriedades de LLCs
- Autômatos de Pilha
- Forma normal de Chomsky
- Gramáticas Regulares e Gramáticas Sensíveis ao Contexto
- Lema do Bombeamento para LLCs
- Máquinas de Turing
- Tese de Church-Turing
- Problemas de Decisão
- Indecidibilidade do Problema da Parada
- Problemas decidíveis e não decidíveis sobre linguagens

Objetivos:

Ao final do curso é esperado que os alunos compreendam as definições e propriedades de modelos matemáticos de computação: linguagens, autômatos e gramáticas. Também é esperado que os alunos compreendam a noção de decidibilidade de problemas e que tenham uma noção sobre como reconhecer problemas computacionalmente decidíveis e não decidíveis.

Metodologia:

Vídeos sobre o conteúdo teórico da disciplina. Vídeos contendo resolução de exercícios.

Atividades avaliativas:

3 avaliações no valor de 10,0 pontos. A nota final é a média aritmética simples das notas obtidas nas 3 avaliações. As avaliações serão aplicadas de forma assíncrona. O exame especial consistirá de exercícios envolvendo todo o conteúdo da disciplina.

Cronograma:	
Data	Conteúdo
24/08/2020	Apresentação da disciplina: critérios de avaliação e ementa. Conceitos
	introdutórios sobre linguagens formais.
25/08/2020	Autômatos finitos determinísticos
26/08/2020	Minimização de AFDs.
27/08/2020	Produto e complementação de AFDs. Autômatos não determinísticos (AFN).
31/08/2020	Equivalência entre AFNs e AFDs. AFN com transições lambda.
01/09/2020	Equivalência entre AFN lambda e AFN. Linguagens regulares.
02/09/2020	Lema do bombeamento para linguagens regulares.
03/09/2020	Propriedade de fechamento de linguagens regulares.
07/09/2020	Expressões regulares: sintaxe e semântica. Equivalência com AFs.
08/09/2020	Gramáticas regulares: Definição e equivalência com AFs.
09/09/2020	Revisão para avaliação 1.
10/09/2020	Avaliação 1
14/09/2020	Correção da avaliação 1. Autômatos de pilha determinísticos.
15/09/2020	Autômatos de pilha não determinísticos (APN).
16/09/2020	Critérios alternativos de reconhecimento para APN.
17/09/2020	Gramáticas livres de contexto (GLC).
21/09/2020	Manipulação de gramáticas.
22/09/2020	Formais normais de Chomsky e Greibach.
23/09/2020	Lema do bombeamento para linguagens livres de contexto.
24/09/2020	Propriedades de fechamento para linguagens livres de contexto.
28/09/2020	Revisão para avaliação 2
29/09/2020	Avaliação 2.
30/09/2020	Correção da avaliação 2. IIntrodução às máquinas de Turing.
01/10/2020	Linguagens recursivas e recursivamente enumeráveis.
05/10/2020	Variantes de máquinas de Turing.
06/10/2020	Gramáticas irrestritas e sensíveis ao contexto. Hierarquia de Chomsky.
07/10/2020	Conjuntos enumeráveis e o teorema de Cantor. A tese de Church-Turing.
08/10/2020	MT universal, o problema da parada e sua indecidibilidade.
12/10/2020	Redução de problemas: definição e exemplos. O teorema de Rice:
	demonstração e aplicações.

	13/10/2020	O problema de correspondência de Post e sua indecidibilidade. Problemas
		indecidíveis sobre GLCs
	14/10/2020	Revisão para avaliação 3.
	15/10/2020	Avaliação 3.
	16/10/2020	Entrega de resultados parciais.
	19/10/2020	Exame especial
	21/10/2020	Entrega de resultados finais.
1		

Bibliografia Básica:

- SIPSER, Michael. Introdução à teoria da computação. São Paulo. Thomson Learning, 2007.
- SIVERIO, Tiarajú Asmuz; BLAUTH, Paulo. Teoria da Computação Máquinas Universais e Computabilidade. Bookmann.
- VIERA, Newton José. Introdução aos Fundamentos da Computação: Linguagens e Máquinas.
 Disponível gratuitamente on-line: https://homepages.dcc.ufmg.br/~nvieira/cursos/tl/a18s2/material.html

Bibliografia Complementar:

- RODGER, Susan H., FINLEY, Thomas W. JFLAP An Interactive Formal Languages and Automata Package. Disponível gratuitamente on-line: http://www.jflap.org
- RIBEIRO, Rodrigo. Notas de aula de matemática discreta. Disponível gratuitamente on-line: https://github.com/rodrigogribeiro/apostila-discreta
- STEIN, Clifford; DRYSDALE, Robert L. Matemática discreta para ciência da computação.
 Pearson.