

UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE COMPUTAÇÃO

PLANO DE ENSINO

Nome do Componente Curricular em português:			Código:			
Introdução à Programação	BCC201					
Nome do Componente Curricular em inglês:						
Introduction to Programming						
Nome e sigla do departamento:			Unidade acadêmica:			
Departamento de Computação (DECOM)			ICEB			
Nome dos docentes:						
Túlio Ângelo Machado Toffolo e Puca Huachi Vaz Penna						
Carga horária semestral:	Carga horária semanal teórica:	Carga horária semanal prática:				
90 horas	8 horas/aula	4 horas/aula				
Data de aprovação na assembleia departamental:						
06 / 08 / 2020						

Ementa:

Introdução à lógica de programação; conceitos básicos sobre algoritmos, utilização e formas de representação (fluxograma e portugol); tipos de dados; variáveis e constantes; expressões e operadores relacionais, aritméticos e lógicos; estruturas condicionais e de repetição; modularização de programas (funções e procedimentos); estruturas de dados homogêneas (vetores e matrizes) e heterogêneas (estruturas); manipulação de cadeias de caracteres; ponteiros; alocação dinâmica de memória; processamento de arquivos.

Conteúdo Programático:

- Representação de dados
- Conceitos e Representação de algoritmos
- Fluxograma e portugol
- Conceitos básicos de programação, valores, tipos e expressões
- Variáveis, comandos de atribuição e de entrada e saída
- Comandos de controle de fluxo
- Comando de decisão (if)
- Comandos de decisão múltipla, de salto (switch, break)
- Comando de repetição (while, do-while, for)
- Estruturas de dados homogêneas (vetores)
- Funções e procedimentos
- Cadeia de caracteres (strings)
- Estruturas de dados homogêneas II (Matrizes)
- Estrutura heterogêneas
- Apontadores e memória dinâmica (Ponteiros)
- Arquivos

Objetivos:

Iniciar o aluno à solução de problemas por meio de algoritmos procedimentais/imperativos.

Metodologia:

- Aulas teóricas expositivas sobre o conteúdo. As aulas podem ser síncronas, usando o Google Meet, ou assíncronas (vídeos e áudios). As aulas síncronas serão gravadas e disponibilizadas para todos os alunos.
- Aulas práticas com a implementação dos métodos estudados. Os professores e monitores proverão auxílio - opcional aos alunos - durante o horário da aula por meio do Google Meet.
 Exercícios resolvidos deverão ser enviados pela plataforma Moodle.
- Exercícios após aulas expositivas que deverão ser enviados pela plataforma Moodle.
- **Estudos dirigidos** (individuais ou em grupos) que deverão ser entregues semanalmente pela plataforma Moodle.
- **Provas teóricas** orais e escritas realizadas de forma síncrona, usando o Google Meet e a plataforma Moodle.
- Trabalho prático individual abrangendo todo o conteúdo da disciplina. Os alunos deverão entregar o trabalho pelo Moodle e apresentá-lo para o(s) professor(es) por meio da plataforma Google Meet.

Frequência: será computada por meio das atividades entregues pela plataforma Moodle.

Atividades avaliativas:

- Duas provas teóricas (40% da nota: 20% cada).
- Trabalho prático (30% da nota).
- Estudos dirigidos e exercícios direcionados (20% da nota).
- Exercícios das aulas práticas (10% da nota).

Exame especial: prova oral aplicada em dois dias, 20/10/2020 e 21/10/2020, nos horários reservados para a disciplina usando o Google Meet e a plataforma Moodle. Será agendado um horário para cada aluno.

Cronograma:

Aula	Data	Conteúdo
Aulas 01-02	25/ago	Apresentação da disciplina
Aulas 03-04 (P)	25/ago	Apresentação de requisitos para aulas práticas
Aulas 05-06	26/ago	Fluxogramas e representação de algoritmos
Aulas 07-08	26/ago	Estudo dirigido
Aulas 09-10	27/ago	Conceitos básicos, valores, tipos e expressões
Aulas 11-12 (P)	27/ago	Comandos e compilação
Aulas 13-14	01/set	Variáveis, comandos de atribuição e de entrada e saída
Aulas 15-16 (P)	01/set	Variáveis, comandos de atribuição e de entrada e saída
Aulas 17-18	02/set	Comandos de decisão (if)
Aulas 19-20	02/set	Estudo dirigido
Aulas 21-22	03/set	Comandos de decisão aninhados
Aulas 23-24 (P)	03/set	Comandos de decisão aninhados
Aulas 25-26	08/set	Comandos de decisão múltipla, de salto (switch, break)
Aulas 27-28 (P)	08/set	Comandos de decisão múltipla, de salto (switch, break)
Aulas 29-30	09/set	Funções
Aulas 31-32	09/set	Estudo dirigido
Aulas 33-34	10/set	Funções e ponteiros
Aulas 35-36 (P)	10/set	Funções e ponteiros

Aulas 37-38	15/set	Comando de repetição (while)
Aulas 39-40 (P)	15/set	Comando de repetição (while)
Aulas 41-42	16/set	Comando de repetição (do-while e for)
Aulas 43-44	16/set	Estudo dirigido
Aulas 45-46	17/set	Estudo dirigido
Aulas 47-48 (P)	17/set	Comando de repetição (do-while e for)
Aulas 49-50	22/set	Comando de repetição aninhados
Aulas 51-52 (P)	22/set	Comando de repetição aninhados
Aulas 53-54	23/set	Prova 01
Aulas 55-56	23/set	Estudo dirigido
Aulas 57-58	24/set	Estudo dirigido
Aulas 59-60 (P)	24/set	Correção da Prova 01
Aulas 61-62	29/set	Estruturas de dados homogêneas
Aulas 63-64 (P)	29/set	Estruturas de dados homogêneas
Aulas 65-66	30/set	Estruturas de dados homogêneas multidimensionais
Aulas 67-68	30/set	Estudo dirigido
Aulas 69-70	01/out	Arquivos de texto e binários
Aulas 71-72 (P)	01/out	Arquivos de texto e binários
Aulas 73-74	06/out	Estrutura heterogêneas (struct)
Aulas 75-76 (P)	06/out	Estrutura heterogêneas (struct)
Aulas 77-78	07/out	Apontadores e alocação dinâmica de memória
Aulas 79-80	07/out	Estudo dirigido
Aulas 81-82	08/out	Apontadores e alocação dinâmica de memória
Aulas 83-84 (P)	08/out	Apontadores e alocação dinâmica de memória
Aulas 85-86	13/out	Apontadores e alocação dinâmica de memória
Aulas 87-88 (P)	13/out	Apontadores e alocação dinâmica de memória
Aulas 89-90	14/out	Prova 02
Aulas 91-92	14/out	Estudo dirigido
Aulas 93-94	15/out	Estudo dirigido
Aulas 95-96 (P)	15/out	Correção da Prova 02
Ex. Especial	20/out	1a Reserva para Exame Especial
Ex. Especial	20/out	2a Reserva para Exame Especial
Ex. Especial	21/out	3a Reserva para Exame Especial
Ex. Especial	21/out	4a Reserva para Exame Especial

Bibliografia Básica:

- DEITEL, Paul; DEITEL, Harvey M. C: como programar. 6. ed. São Paulo: Pearson Education, 2011. Disponível online em MinhaUFOP/BVirtual Pearson.
- DEITEL, Harvey M.; DEITEL, Paul J. C++: como programar. 5. ed. São Paulo: Pearson Prentice Hall, 2006. <u>Disponível online em MinhaUFOP/BVirtual Pearson</u>.
- SOUZA, Marco Antonio Furlan de. Algoritmos e lógica de programação. São Paulo: Cenage Learning, 2005. Disponível online em MinhaUFOP/Minha Biblioteca.

Bibliografia Complementar:

 ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene Aparecida Veneruchi. Fundamentos da programação de computadores: algoritmos, pascal e c/c++. São Paulo: Prentice-Hall, 2005.
 Disponível online em MinhaUFOP/BVirtual Pearson.

- GUEDES, Sérgio. Lógica de Programação Algorítimica. São Paulo: Pearson Education do Brasil, 2014. <u>Disponível online em MinhaUFOP/BVirtual Pearson</u>.
- MIZRAHI, Victorine Viviane. Treinamento em linguagem C. São Paulo: Pearson Education, 1990.
 Disponível online em MinhaUFOP/BVirtual Pearson.
- MIZRAHI, Victorine Viviane. Treinamento em linguagem C++: módulo 2. São Paulo: Makron Books, 1995. <u>Disponível online em MinhaUFOP/BVirtual Pearson</u>.
- SAVITCH, Walter J. C++ absoluto. São Paulo: Pearson Education: Addison Wesley, 2004.
 Disponível online em MinhaUFOP/BVirtual Pearson.